Code for "Exploiting Semantic Scene Reconstruction for Estimating Building Envelope Characteristics" (Building and Environment 2025) https://epfl-imos.github.io/buildnet3d.github.io/
Find a file
2025-10-02 01:14:20 +02:00
bproc_generator Implementation of BlenderProc Data Generator 2025-07-09 18:25:10 +02:00
buildnet3d Update README and method configs 2025-10-02 01:14:20 +02:00
nerfstudio@9b3cbc79bf Add nerfstudio pinned to v1.1.3 2025-09-28 17:35:01 +02:00
scripts add transformation script for transforming COLMAP formats to BuildNet formats 2025-08-26 18:26:16 +02:00
.gitignore Update cleaned reconstruction scripts 2025-10-01 23:53:06 +02:00
.gitmodules Add nerfstudio pinned to v1.1.3 2025-09-28 17:35:01 +02:00
README.md Update README and method configs 2025-10-02 01:14:20 +02:00

BuildNet3D

Official code for "Exploiting Semantic Scene Reconstruction for Estimating Building Envelope Characteristics" (Building and Environment 2025)

3D Semantic Building Reconstruction

This repository extends nerfstudio (v1.1.3) to reconstruct building envelope surface meshes with appearance, geometry, and semantic properties using SDF-based representations.

Usage

# Reconstruction
python buildnet3d/scripts/reconstruct.py --model-type semantic-sdf --data <DIR_TO_DATA>

Multi-Modal Imageset Generation

This repository uses BlenderProc to generate multi-modal image data from 3D building models. The rendered outputs include RGB, depth maps, surface normals, semantic labels, and instance segmentations. We implement a simple rule-based sampling method to randomly place camera viewpoints while ensuring the entire object remains within the view. More details are provided here.

The generated buildnet3d image dataset is available here.

Installation

# Clone repository
git clone --recursive git@github.com:EPFL-IMOS/buildnet3d.git

# Install dependencies
cd buildnet3d/nerfstudio
pip install -e .
# Install tinycudann
TCNN_CUDA_ARCHITECTURES=<YOUR_ARCH> \
pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch 

The code was tested on A100 GPU with Python 3.10, PyTorch 2.0.1, and CUDA 11.8.

Citation

If you find this repository or the associated dataset useful, please cite:

@article{XU2025112731,
      title = {Exploiting semantic scene reconstruction for estimating building envelope characteristics},
      journal = {Building and Environment},
      volume = {275},
      pages = {112731},
      year = {2025},
      issn = {0360-1323},
      doi = {https://doi.org/10.1016/j.buildenv.2025.112731},
      url = {https://www.sciencedirect.com/science/article/pii/S0360132325002136},
      author = {Chenghao Xu and Malcolm Mielle and Antoine Laborde and Ali Waseem and Florent Forest and Olga Fink},
}